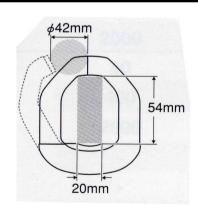
EA708D-14A クランプメーター

〈什様〉

平均値方式
4000カウント
約3回/秒
オート及びマニュアル
数値部に"OL"を表示
マイナス入力時に"ー"のみ表示
約2.4V以下で電池マークが点灯または点滅
高度2000m以下·環境汚染度Ⅱ
単4電池×2本
約2.2mA/DCVファンクション
約120時間(DCVファンクション連続測定)
最大42mm
238 × 95 × 45mm
約290g(電池含む)
電源投入後 約30分
テストリード、キャリングケース、電池(お試し)
IEC61010 CAT.Ⅲ600V

〈測定範囲および確度〉


●交流電流 ACA

レンジ 400.0A…確度: ±(1.7%rdg+5dgt) 1000A…確度: ±(1.7%rdg+5dgt)

- ·平均值応答 周波数範囲:50/60Hz(正弦波交流)
- ・確度は、クランプセンサの中心で測定した確度です。
- ・表示値がレンジの15%以下の確度は、上記確度に8dgtを加算します
- ・隣接する導体に流れる電流の影響で0.06A/A以下の誘導誤差を生じる事があります
- ・インバーター電源回路の測定では誤作動することがあります

●直流電圧 DCV

レンジ 400.0mV…確度: ±(1.2%rdg+3dgt)、 入力抵抗:約1000MΩ 4.000V…確度: ±(1.9%rdg+3dgt)、 入力抵抗:約10MΩ 40.00V…確度: ±(1.9%rdg+3dgt)、 入力抵抗:約10MΩ 400.0V…確度: ±(1.9%rdg+3dgt)、 入力抵抗:約10MΩ 600V …確度: ±(2.2%rdg+4dgt)、 入力抵抗:約10MΩ

●交流電圧 ACV

レンジ	周波数	確度	入力抵抗	
400.0mV	50Hz∼500Hz	\pm (4.2%rdg+5dgt)		
4.000V	50Hz/60Hz	\pm (2.2%rdg+5dgt)		
	60Hz∼500Hz	\pm (2.7%rdg+5dgt)		
40.00V	50Hz/60Hz	\pm (2.2%rdg+5dgt)	約10MΩ	
	60Hz∼500Hz	\pm (2.7%rdg+5dgt)	ሕብ I OIAI 25	
400.0V	50Hz/60Hz	\pm (2.2%rdg+5dgt)		
	60Hz∼500Hz	\pm (2.7%rdg+5dgt)		
600V	50Hz∼500Hz	\pm (3.2%rdg+5dgt)		

●抵抗測定 Ω

レンジ	確度
400.0Ω	\pm (1.7%rdg+6dgt)
4.000 k Ω	
40.00k Ω	\pm (1.2%rdg+4dgt)
400.0k Ω	
4.000 M Ω	\pm (1.7%rdg+4dgt)
40.00 M Ω	\pm (2.7%rdg+6dgt)