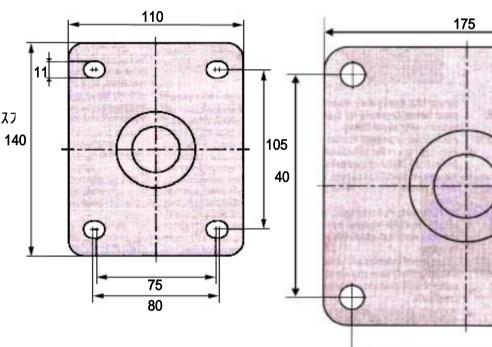

EA986HH - 1
EA986HH - 2
EA986HH - 3
(自在金具付車輪

車輪径	車輪幅	軸径	ハブ長	タイヤ重量(g)	耐荷重(kg)	全高	プレート	オフセット	重量(kg)
200	50	20	60	1000	75	235	140X110	65	2.6
220	70	20	75	1100	100	250	140X110	60	3
260	85	20	75	1400	250	308	175X175	78	5.7
								I	

プレートサイズ


ブラケット部 スチール製

プレススチールを使用 注油済みで通常条件下ならメンテナンスフ

タイヤ部 ゴム製 ジグザグパターン チューブ入り 空気圧 2.5bar/36psi リム部 スチール製 ボールベアリング入り

ブレーキ付(ストップトップ・前輪用)

(参考)

ベアリングの種類

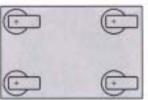
- ・プレーン保持…シンプルで低コスト・耐腐食性のホイール保持方法。通常、メンテナンスはいらない器具や 装置に使われており、遅い速度と断続的な仕様で装置を運ぶ
- ・ローラーベアリング...丈夫で抵抗力があり、特にメンテナンスはいらないスチールあるいは、プラスチックの かじにぴったり合せたスチールローラーから成っている
- ・ボールベアリング...高い負荷容量に耐えられる仕組みになっており、環境的な影響に抵抗力がある。主に機械的に 厳しい輸送装置や負荷に耐えられるホイールに使われる。構成は固くした内側の リングと外側のリングで囲ってあり、ボールかごに保護された固いボールから成っている

ブレーキシステム

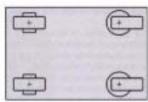
- ・ストップ フィックス …普通のトランスポートキャスター用ブレーキシステム
- ・ストップ トップ ... 大きな負荷が車輪やキャスターにかかっても、ロックできるシステム キャスターの配置例

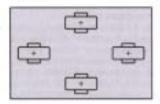


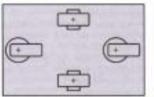
15

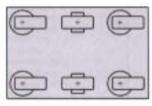

175

ローラーベアリング


140


スイペルキャスターメ3 小負荷用。まっすぐの 軌道は操作しにくい。


スイベルキャスタ-X4 制限された場所に。 まっすぐの軌道はやや 制御しにくい。


スイベルキャスタ-X2 固定キャスタ-X2 一般的配置例。 制限された場所に。

固定キャスターX4 経済的。 まっすぐな 軌道に最適。 傾斜しやすい。

スイベルキャスターX2 固定キャスターX2 まっすぐな軌道に 最適。スポットの方向 転換もok。やや傾斜 しやすい。

スイペルキャスタ-X4 固定キャスタ-X2 経済的とは言い難いが 重量物及び長距離に。

キャスターの個数と負荷の関係式

T = 複数のキャスターで耐え得る荷重。

E = 輸送物の静荷重

Z=最大追加負荷

n=キャスター数

S = 安全係数(状況によるが1.3~2.0とする)

$$T = \frac{E + Z}{n} \times S$$

より一般的式

総荷重の限度 = 1ヶあたりの許容荷重XnX0.8